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Abstract
Two mutually noninteracting qubits with identical modest coupling to one and
the same reservoir are considered. For a given Hamiltonian and uncorrelated
initial state, the mathematically rigorous Davies theory of the weak-coupling
and van Hove limit provides a unique Markovian quantum master equation
where absolutely none of the usually made additional assumptions and further
approximations are introduced. Due to completely positive time evolution also
no artificial correlations can arise. Numerical solution of the Markovian master
equation shows that the qubits become entangled. In a first short time-interval
containing one single maximum of entanglement for reservoir temperature
T = 0, different choices of uncorrelated initial states give rise to a remarkable
emergence of entanglement of different degree. The quantitative evaluation is
analysed in terms of a measure derived from Wootters concurrence. Selected
results show that there are even states that acquire the possible maximum.
Particularly those states will show a periodic type of ‘collapse and revival’
behaviour with exponentially decaying envelope at longer times. This has never
been reported so far for noninteracting qubits as mediated by simultaneous
coupling to an uncontrollable reservoir. Moreover, even selected uncorrelated
mixed states of modest degree of mixture may show a similar behaviour,
although less pronounced. For T > 0 states with high degree of entanglement
at T = 0 in the first time-interval still show a gradually reduced value up to
a few tenth of Kelvin but for T � 33 K no effects can be observed. Finally,
initially entangled states will slowly lose their oscillatory degree, again with
exponential envelope, as the bipartite system approaches its stationary final
state.
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1. Introduction

The central importance of entanglement for quantum communication has been shown in
numerous treatments [1–4]. Many papers are devoted to questions about how to preserve
entanglement for some time, how to increase it, or even how to generate it by various
methods [5–8]. In most cases it is naturally assumed that during any dynamical evolution of
small quantum systems their unavoidable coupling to some environment causes decoherence
effects and a related destruction of a desired entanglement. Several proposals how to avoid
decoherence or how to escape into so-called decoherence-free subspaces have also been
published [9–15].

It is of particular interest to note that also the possibility of the contrary has been
investigated, i.e., the mere creation of entanglement out of an almost or completely
disentangled initial state through interaction with the environment. Even though this seems to
be somewhat counterintuitive it could be shown that the interaction of a large reservoir in an
arbitrary mixed initial state with a single qubit in a pure initial state can dynamically induce a
nontrivial correlation [16, 17]. More than that, the time-dependent appearance of entanglement
has been evident from exact solutions of simple and also more complicated versions of the
Jaynes–Cummings model in quantum optics [18–21]. By coupling a bipartite system (two
qubits) to a heat bath of harmonic oscillators the non-Markovian dynamics starting from a
separable initial state may also induce some entanglement on shorter or, exceptionally, even
longer time scales [22]. Whereas the above-mentioned examples involve an essentially non-
Markovian dynamics there are also treatments of rather phenomenological Markovian type
[23, 24]. Furthermore, in a more rigorous Markovian setting, entanglement formation has
been found in a model of two atoms immersed in a thermostat [25] where the time evolution
is given by a completely positive quantum dynamical semigroup with infinitesimal generators
simply parametrized in terms of spontaneous emission and photon exchange rates. Finally,
in a rather general treatment of two noninteracting two-level systems, coupled to a common
reservoir, various conditions on input parameters favouring possible dynamical generation of
entanglement out of uncorrelated initial states near t = 0 are worked out. The underlying
completely positive time evolution is based on a suitable parametrization of generators [26].

The present work exclusively starts from a given Hamiltonian for two noninteracting qubits
coupled to a reservoir with well-defined properties in terms of time-dependent correlation
functions, as used in common versions of spin-boson models in the ohmic case. In contrast to
earlier work, absolutely no additional approximations or further simplifications are introduced
such as, e.g., assumptions on vanishing Hamiltonian shifts, or a drastic reduction of the number
of relevant relaxation parameters. For this purpose, the only general, mathematically and
quantum-mechanically consistent Markovian dynamics in the weak-coupling and van Hove
limit is given by the theory of Davies [27]. As will be shown, this leads to a genuine reduced
dynamics free of any artificial correlations, as they might be present in phenomenological
master equations. The result is a time evolution which, according to all necessary and sufficient
requirements [28, 29], is given by a so-called completely positive quantum-dynamical map.
This allows us to trace out a quantification of entanglement as a function of time over the entire
time scale by using Wootters concurrence and, in particular, offers the possibility of analysing
the influence of reservoir temperatures. The analysis of selected cases covers mostly pure,
uncorrelated initial states of the qubits at T = 0 and T > 0, as well as initially entangled
states at T = 0.

Last, a short summary of the paper is given. In section 2 the Davies theory of quantum
dissipation is worked out for the case of two independent, mutually noninteracting qubits that
interact with a single reservoir. On the basis of a standard spin-boson model the reservoir
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pair-correlation function is explicitly evaluated. The latter provides all damping constants
and level shifts figuring in the Markovian equation. Section 3 is devoted to the numerical
computation of the density matrix that describes the evolution of the bipartite system. The
emergence of entanglement is investigated with the help of a measure based on Wootters
concurrence. Dependence on the choice of initial states and on reservoir temperatures is
analysed. Section 4 contains a discussion of the results.

2. The Davies generator for completely positive time evolution

On the tensor spaces H = HB ⊗ HR , where HB = H1 ⊗ H2 refers to the two-qubit bipartite
system and HR to the reservoir, the total Hamiltonian reads

H = HB ⊗ 11R + 11B ⊗ HR + λHBR ⊗ VR,

HB = hQ ⊗ 11 + 11 ⊗ hQ, hQ = 1
2 (�σ1 + εσ3),

HBR = hBR ⊗ 11 + 11 ⊗ hBR, hBR = 1
2 (wσ1 + uσ3),

(1)

HBR provides identical coupling of both mutually noninteracting qubits to the reservoir, and
{σ1, σ3} are Pauli matrices. The reservoir consists of harmonic oscillators with Hamiltonian
HR = ∑

n ωna
∗
nan and a coupling term VR = ∑

n cn(a
∗
n + an), to be specified in more detail

below in terms of a two-point correlation function. Unitary time-evolution of the total system
with density operator Wt is then given by Ẇt = −i[H,Wt ],Wt = UtW0U−t , Ut = e−iHt ,
starting from a completely uncorrelated initial state W0 = ρ(0) ⊗R(β). The reduced density
operator for the bipartite system is obtained by the partial trace ρ(t) = TrR{Wt}, and the
reservoir is supposed to be in the stationary Gibbs state R(β) = e−βHR/Z(β), β = 1/(kBT ).
According to Davies [27, 30], the Markovian quantum master equation is then given by the
following expressions,

ρ̇(t) = (DH + DR){ρ(t)}, (2)

DH {ρ(t)} = −i

[(
HB +

4∑
k,l=1

s̃β(�kl)A
∗
klAkl

)
, ρ(t)

]
, (3)

DR{ρ(t)} = 1

2

4∑
k,l=1

c̃β(�kl)([Aklρ(t), A∗
kl] + [Akl, ρ(t)A∗

kl]). (4)

Akl is an operator-valued Fourier coefficient in a decomposition of the Heisenberg
representation HBR(t) with respect to the difference spectrum of HB ,

HBR(t) = UB
−tHBRUB

t =
4∑

k,l=1

Akl e−i�kl t , UB
t = e−iHBt , (5)

HB =
4∑

m=1

λmPm, Akl = PkHBRPl, �kl = λl − λk. (6)

The explicit model eigenvalues are λ1 = λ2 = 0, λ3 = −λ4 =
√

ε2 + �2, and {Pm}4
1 are the

one-dimensional orthogonal projectors. The coefficients in DR and DH are given by Fourier
and Hilbert transforms of the correlation function Cβ(t) with respect to the stationary reservoir
state R(β),
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Cβ(t) = TrR(VRVR(t)R(β)), VR(t) = UR
−tVRUR

t ,

UR
t = e−iHRt , c̃β(ω) =

∫ ∞

−∞
Cβ(t) e−iωt dt,

s̃β(ω) = P
2π

∫ ∞

−∞

c̃β(ν)

ν − ω
dν = i

∫ ∞

0
Cβ(t) e−iωt dt − i

2
c̃β(ω),

(7)

where P denotes the principal part. As frequently used for spin-boson models in the limit of
an infinite heat bath in the ohmic case, we choose a smooth, continuous spectral density J (ν)

for the representation of the correlation function [31, 32],

Cβ(t) =
∫ ∞

0
J (ν)[coth(βν/2) cos(νt) + i sin(νt)] dν, J (ν) = α

2
ν e−ν/ωc , (8)

with strength α and cutoff ωc. The exact result for the time- and temperature-dependent
complex-valued correlation function Cβ(τ) is then obtained as

Cβ(τ) = fβ(τ ) + igβ(τ ), (9)

fβ(τ ) = αω2
c

2

1 − τ 2

(1 + τ 2)2
+ αω2

c

∞∑
k=1

(1 + βωck)2 − τ 2

[(1 + βωck)2 + τ 2]2
, (10)

gβ(τ ) = αω2
c

τ

(1 + τ 2)2
, τ = ωct. (11)

This leads to an exact representation for the Fourier transform of the dissipative contribution,
satisfying the indispensable KMS-condition c̃β(−ω) = e−βωc̃β(ω) [27, 29, 33],

c̃β(ω) = πα

2
e− |ω|

ωc

{
|ω| eβ|ω| + 1

eβ|ω| − 1
+ ω

}
, (12)

whereas the Hilbert transform (7) cannot be analytically evaluated and must be obtained by
numerical computation.

In order to show complete positivity with help of a representation derived by Gorini,
Kossakowski and Sudarshan [28, 29] one transforms the above equations into normal form,

ρ̇(t) = (DH + DR){ρ(t)} → LH {ρ(t)} + LR{ρ(t)}. (13)

In particular, the relevant dissipative contribution is represented by

LR{ρ(t)} = 1

2

15∑
i,k=1

aik([Fi, ρ(t)Fk] + [Fiρ(t), Fk]), A = {aik}15
i,k=1 � 0, (14)

where A must be positive-semidefinite and the set {Fi}15
1 is a complete orthonormal matrix

set, conveniently given by the infinitesimal generators of the Lie algebra of SU(4). For the
transformation DR → LR we use the expansion

Amn =
15∑
i=1

µmn
i Fi + µ011B, µmn

i = Tr(AmnFi), (15)

aik =
4∑

m,n=1

c̃β(�mn)µ
mn
i µmn

k , (16)

where the bar denotes complex conjugation. The above structure of aik guarantees thatA = A∗

and A � 0, such that it is explicitly shown that the Davies form generates a completely positive
quantum dynamical semigroup.
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3. Method of solution and measures of entanglement

The numerical solution is then performed in a suitable coherence-vector representation leading
to 15 coupled, real first-order differential equations, as obtained from the decomposition

ρ(t) = 1

4
11B +

15∑
i=1

vi(t)Fi, ρ(0) = ρ1 ⊗ ρ2, (17)

ρ̇(t) → �̇v(t) = (Q + R)�v(t) + �k, (18)

with an uncorrelated pure initial state for both qubits. All details for the transformations
LH → Q and LR → {R, �k} are available elsewhere [29] but, for completeness, necessary
formulae are summarized in the appendix.

In order to investigate effects of a variation of initial states we will choose a few relevant
examples from the representation

ρi(ϕ) =
(

cos2 ϕ sin ϕ cos ϕ

sin ϕ cos ϕ sin2 ϕ

)
, i = 1, 2, (19)

such that, e.g., for ϕ = 0 both qubits are in their upper state and for ϕ = π/2 they are in the
lower state.

In principle, the manifestation of entanglement can be tested by various methods.
Perhaps the first striking example shows up in the complete Nakajima–Zwanzig equation
for non-Markovian reduced dynamics. For non-factorizable initial states the difference J =
ρ(0) − ρ1(0) ⊗ ρ2(0), where ρ1 = Tr2(ρ), ρ2 = Tr1(ρ), gives rise to a nasty inhomogeneous
term which causes additional serious mathematical difficulties and, in fact, excludes any chance
for semigroup dynamics [34]. A very interesting more recent proof shows that entanglement is
uniquely related to a negative eigenvalue of the density matrix after partial transposition in one
of the qubit components in a Kronecker product representation of ρ in terms of Pauli matrices
[26, 35, 36]. Here, preference will be given to the Wootters measure [37] for a commonly
used quantification of entanglement, denoted by EW(t). The definition is as follows,

EW(t) = F
(

1
2

[
1 + (1 − �2)

1
2
])

,

F(y) = −y log2(y) − (1 − y) log2(1 − y),

� = max{0, 2λmax(ρ̂) − Tr(ρ̂)} : concurrence,

ρ̂ = (
ρ

1
2 ρ̃ρ

1
2
) 1

2 , ρ̃ = (σ2 ⊗ σ2)ρ
T (σ2 ⊗ σ2).

(20)

Above, ρT is the ordinary transpose, λmax the largest eigenvalue of ρ̂ and σ2 again a Pauli
matrix. Note that EW = 0 is obtained for separable states, whereas the maximally entangled
singlet state of two spin-(1/2) systems, e.g., acquires the value EW = 1, such that for all states
{0 � EW � 1} is satisfied.

The first considerations regard the dynamics at temperature T = 0 (β = ∞). As shown
in figure 1, depending on the choice of inital state a remarkable emergence of entanglement
builds up to about t = 0.6, followed by a subsequent decrease. Surprisingly, even almost
complete entanglement is achieved for ϕ ≈ 0.4 whereas, by symmetry, the values for ϕ = 0
and ϕ = π/2 are identical.

Of course, the coupling to the reservoir is expected to induce an irreversible process with
a stationary final state reached in the infinite time limit. In fact, due to the particular, efficient
coupling HBR the quantum dynamical semigroup is uniquely relaxing, that is, any arbitrary
initial state ends in one and the same final destination state [29] and is, of course, independent
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Figure 1. Degree of entanglement EW (t) according to (20), in a first interval and for different
initial states according to (19). The model parameters have been set to ε = � = w = 2, u = 4,

α = 0.01, ωc = 30, T = 0.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

t

EW(t)

Figure 2. Oscillating longtime behaviour of generated entanglement EW (t) with a perfect
exponential envelope e−t/τ , τ = 12.5, for ϕ = 0.4 and T = 0.

of any choice of ϕ. Therefore, one gets ρ(∞) from �v(∞) = −(Q + R)−1�k in (18). In
particular, the final state turns out to be pure and uncorrelated, i.e., ρ(∞) = ρ2(∞), ρ(∞) =
ρ(1)(∞) ⊗ ρ(2)(∞), where each factor is also a pure state. Thus, time-evolution causes
two initially disentangled pure states to become entangled for a finite period whereas in the
asymptotic regime they become disentangled and pure again. As can be seen in more detail on
the longer time scale in figure 2, a periodic ‘collapse and revival’ of entanglement occurs with
an exponentially decreasing amplitude envelope of a relatively long lifetime. This remains
true for t > 25 and can numerically be calculated to arbitrary desired precision at any time
but, as stated above, the final state is more easily obtained by inverting (Q + R).

A further question concerns the role of purity in the initial states and a related possible
disappearance of entanglement upon increasing degree of mixture. In fact, the maximum
of the (ϕ = 0)-peak in figure 1 decreases almost linearly as a function of x for a choice
ρ1 = ρ2 = diag(x, 1 − x) and, therefore, ρ = diag(x2, x(1 − x), x(1 − x), (1 − x)2) for the
bipartite initial state. In detail, one finds EW = 0 for x � 0.23, and no entanglement will
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Figure 3. Comparison of four temperatures in the first interval, for model parameters as in figure 1,
β = 1/T and ϕ = 0.4.

show up for larger values of x. But the latter value corresponds to about 77% of the maximum
of the single qubit entropy. This shows that there is quite an appreciable range of mixed states
leading to dynamic entanglement but, for x � 0.1 the peaks appear only in the first short
interval 0 � t � 1.

Now, for T > 0, we set β = 1/T , consistent with the chosen model parameters but,
again, the particularly pronounced case ϕ = 0.4 will be investigated. One may then expect
a gradually decreasing degree of entanglement with rising temperature. This is confirmed
by the results shown in figure 3. To have physically realistic quantities in mind, one can
appropriately scale the used parameters. For instance, for an electron spin as a single qubit
with an energy splitting of 28 GHz in 1 Tesla, one obtains a time unit of 0.1 ns and the
same Boltzmann factors as for our dimensionless model parameters if the three temperature
values {T = 10, 20, 40} in figure 3 are reduced by a factor of 0.475. Thus, at equilibrium
with the reservoir, the physical temperatures for a two-level system are {4.75 K, 9.5 K, 19 K}
with corresponding ratios {0.75, 0.87, 0.93} between occupation numbers of upper to lower
level.

This shows that entanglement occurs even at temperatures which are not extremely low,
but essentially restricted to a first short time interval only. In fact, the situation shown in
figure 2 is unique for T = 0, and for T > 0 no reappearance of entanglement at later times is
observed, except for T = 10 with an appreciably smaller second and even much smaller third
peak. And, finally, any entanglement vanishes completely for T > 70 (≈ 33 K).

Of course, due to complete positivity the method allows to study any type of initial
states, and one may wonder about the fate of states with initial degree of entanglement
0 < EW(0) � 1. First of all, the states used for figure 1 show clearly how entangled initial
states propagate. This is trivially due to the properties of semigroup time evolution where
states at any time t0 > 0 can be taken as initial states with identical subsequent evolution [29].
Nevertheless, we analyse in addition a few other especially prepared states derived directly
from the singlet,

ρS = 1

2




0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


 , EW = 1. (21)
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Figure 4. Evolution of states with entanglement at t = 0 and T = 0. a: EW (0) = 0.240;
b: EW (0) = 0.525; c: EW (0) = 0.742; d: EW (0) = 1.

ρS is then suitably modified by parametrized orthogonal transformations according to

ρS → ρ̃S = DρSD
T , DDT = 114. (22)

A convenient choice for D is offered by the special Wigner matrices for spin-(3/2) [38] with
appropriate variation of the polar angle. Figure 4 shows the result of a few cases with different
initial degree of entanglement, as generated from (22). The straight line (d) puts in evidence
why the extremal singlet state may be called robust since it goes slowly to zero without any
oscillations. Not shown is an exponential envelope similar to that in figure 2 which here would
have a somewhat longer decay time of about τ ≈ 17, but almost identically for all states.

4. Conclusion

In conclusion, we have shown that a bipartite system, starting from uncorrelated pure initial
states of two mutually noninteracting qubits, can acquire considerable entanglement, even up
to its maximum value possible, during its Markovian time evolution, as due to some coupling
to the environment. For a reliable quantification of the degree of entanglement Wootters
concurrence has proven to be particularly appropriate. The methods used are able to treat
initially uncorrelated as well as correlated states at different temperatures T � 0 and on the
entire time-scale t �0, including the limit t →∞.

The generation of entanglement shows a sensitive dependence on temperature. In
particular, the initially oscillating amplitude is gradually reduced, essentially to a first peak
only, as soon as temperature rises. It is important to stress again that the results follow
exclusively on the basis of well-defined Hamiltonians and initial conditions, and no tentative
and rather artificial additional assumptions have been introduced such as, e.g.,vanishing
Hamiltonians or very special, purely phenomenological relaxation parameters. In fact, the
consequent calculation and inspection of the relaxation matrix A shows that, except for a very
few ones, all elements are of essential magnitude, and it would be completely unreasonable
to introduce any unnecessary simplifications. And furthermore, the fundamental property
of complete positivity excludes any artificial entanglement, as it may occur when using
phenomenological master equations [39], nor is the analysis restricted to any special class of
initial states. Finally, for the same model as used in the present work, preliminary calculations
on non-Markovian dynamics were carried out with help of a very accurate code [40, 41]
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showing a very satisfactory agreement with the Markovian results. Therefore, it is reasonable
to expect that our findings possess quite general validity, as long as the coupling between
qubits and reservoir remains of moderate magnitude.
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Appendix

The infinitesimal generators of SU(4) satisfy the following relations,

Fj = F ∗
j , Tr(Fj ) = 0, Tr(FjFk) = δjk, (A.1)

[Fj , Fk] = i
15∑
l=1

fjklFl, {Fj , Fk} = 1

2
11Bδjk +

15∑
l=1

djklFl, (A.2)

FjFk = 1

4
11Bδjk +

1

2

15∑
l=1

(djkl + ifjkl)Fl. (A.3)

The coefficients {fjkl} are the completely antisymmetric (with respect to interchanging any
pair of indices) and {djkl} the completely symmetric structure constants of the Lie algebra of
SU(4). Their values are tabulated in a common representation in [29]. Using (A.2) and (A.3)
any multilinear expression in the generators can be contracted to a linear form.

Details for the transformations LH → Q and LR → {R, �k} are available elsewhere
[29], but for completeness a summary will be given. The matrix elements Q = {qik} of the
Hamiltonian contribution read

qik =
15∑
l=1

hlflki , hl = Tr
(
H tot

B Fl

)
, (A.4)

H tot
B = HB +

4∑
k,l=1

s̃β(�kl)A
∗
klAkl =

15∑
k=1

hkFk +
1

4
Tr

(
H tot

B

)
11B. (A.5)

Due to the commutator in (3) only the traceless components of H tot
B are needed.

The matrix elements of the relaxing part R = {rik} and the components of the vector �k
are given by

rik = −1

4

15∑
l,m,n=1
(m�n)

(2 − δmn) Re(amn){filmfkln + filnfklm} (A.6)

+
1

2

∑
l,m,n=1
(m<n)

Im(amn){filmdkln − filndklm}, (A.7)

ki = −1

2

∑
k,l=1
(k<l)

Im(akl)fikl . (A.8)
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2001 Quantum Information (Berlin: Springer)
[4] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[5] Cirac J I, Dr W, Kraus B and Lewenstein M 2001 Phys. Rev. Lett. 86 544
[6] Dür W, Vidal G, Cirac J I, Linden N and Popescu S 2001 Phys. Rev. Lett. 87 137901
[7] Zyckowski K, Horodecki P, Horodecki M and Horodecki R 2001 Phys. Rev. A 65 012101
[8] Stelmachovic P and Buzek V 2001 Phys. Rev. A 64 062106

Stelmachovic P and Buzek V 2003 Phys. Rev. A 67 029902
[9] Zurek W H 1982 Phys. Rev. D 26 1862

[10] Beige A, Braun D, Tregenna B and Knight P L 2000 Phys. Rev. Lett. 85 1762
[11] Retamal J C and Zagury N 2001 Phys. Rev. A 63 032106
[12] Lidar D A, Chuang I L and Whaley K B 1998 Phys. Rev. Lett. 81 2594
[13] Lidar D A and Whaley K B 2003 Decoherence-Free Subspaces and Subsystems Irreversible Quantum Dynamics

(Lecture Notes in Physics vol 622) ed F Benatti and R Floreanini (Berlin: Springer)
[14] Alicki R 2003 Controlled quantum open systems Irreversible Quantum Dynamics (Lecture Notes in Physics

vol 622) ed F Benatti and R Floreanini (Berlin: Springer)
[15] Wu L A, Zanardi P and Lidar D A 2005 Phys. Rev. Lett. 95 130501
[16] Bose S, Fuentes-Guridi I, Knight P L and Vedral V 2001 Phys. Rev. Lett. 87 050401
[17] Kim M S, Lee Jinhyoung, Ahn D and Knight P L 2002 Phys. Rev. A 65 040101
[18] Phoenix S J D and Knight P L 1991 Phys. Rev. A 44 6023
[19] Farhadmotamed F, van Wonderen A J and Lendi K 1998 J. Phys. A: Math. Gen. 31 3395
[20] van Wonderen A J and Lendi K 2002 J. Math. Phys. 43 4692
[21] van Wonderen A J and Lendi K 2002 J. Phys. A: Math. Gen. 35 9889
[22] Braun D 2002 Phys. Rev. Lett. 89 277901
[23] Plenio M B, Huelga S F, Beige A and Knight P L 1999 Phys. Rev. A 59 2468
[24] Plenio M B and Huelga S F 2002 Phys. Rev. Lett. 88 197901
[25] Jakobczyk L 2002 J. Phys. A: Math. Gen. 35 6383
[26] Benatti F, Floreanini R and Piani M 2003 Phys. Rev. Lett. 91 070402
[27] Davies E B 1974 Commun. Math. Phys. 39 91

Davies E B 1976 Math. Ann. 219 147
[28] Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821
[29] Alicki R and Lendi K 1987 Quantum Dynamical Semigroups and Applications (Lecture Notes in Physics

vol 286) (Berlin: Springer)
[30] Gorini V, Frigerio A, Verri M, Kossakowski A and Sudarshan E C G 1978 Rep. Math. Phys. 13 149
[31] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[32] DiVincenzo D P and Loss D 2005 Phys. Rev. B 71 035318
[33] Thirring W 1983 Quantum Mechanics of Large Systems vol 4 (Wien: Springer)
[34] Lendi K 2003 Selected aspects of Markovian and non-Markovian quantum master equations Irreversible

Quantum Dynamics (Lecture Notes in Physics vol 622) ed F Benatti and R Floreanini (Berlin: Springer)
[35] Werner R F 1989 Phys. Rev. A 40 4277
[36] Peres A 1996 Phys. Rev. Lett. 77 1413
[37] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[38] Varsalovich D A, Moskalev A N and Khersonskii V K 1988 Quantum Theory of Angular Momentum (Singapore:

World Scientific)
[39] Alicki R, Lidar D A and Zanardi P 2006 Phys. Rev. A 73 052311
[40] Aissani A and Lendi K 2003 J. Stat. Phys. 111 1353
[41] Kocian P 2006 Impact of von Neumann conditions on non-Markovian dynamics of open quantum systems

PhD Thesis University of Zürich
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